Food Safety at MARS

So, why should we produce safe food?

Quality is the first of our principles. Excellence in Food Safety Management sits at the heart of that

and

- The consumer takes it for granted
- Mars reputation demands it
- Legal obligations and
- Unsafe food might result in illness or death
RESPONSABILITIES

- Food safety governance and strategic oversight
- Foster Quality culture throughout Mars
- Development and verification of Q&FS standards
- Food safety incident management
Dioxins and dioxin-like PCBs
<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Commodity</th>
<th>Contaminant</th>
<th>Exposure Assessment</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| 1968 | Japan (Yusho) | Rice Oil | PCBs, PCDFs | 10 mg/kg BW (PCBs)
58 µg/kg BW (PCDFs) | 1700 victims |
| 1979 | Taiwan (Tucheng) | Rice Oil | PCBs, PCDFs | 17 mg/kg BW (PCBs)
63 µg/kg BW (PCDFs) | 2000 victims |
| 1999 | Belgium | Animal Feed | PCBs and dioxins | 25 µg/kg BW (PCBs, estimated)
500 pg/kg BW (dioxins, estimated) | Recall all meat products >25% fat content |
| 2007 | Switzerland | Guar Gum | Dioxins and pentachlorophenol | 406 pg WHO-TEQ/g product (PCDD/F)
4 mg/kg product (PCP) | Recalls of guar gum and foodstuffs (esp. fruit, dairy) in at least 16 EC member states. |
| 2008 | Ireland | Pork | Dioxins | Up to 200 pg WHO-TEQ/g fat | Withdrawn all pork products from Irish Republic and Northern Ireland |
Dioxins and dioxin-like PCBs

- Polychlorinated dibenzodioxins (PCDDs)
- Polychlorinated dibenzofurans (PCDFs)
- 2,3,7,8-tetrachlorodibenzodioxin (2,3,7,8-TCDD or TCDD)

Polychlorinated biphenyls (PCBs)
Dioxin contamination in food

Soil
Water

Soil
Water

7
Exposure to dioxin and dioxin-like PCBs

- Dioxins are not intentionally added to food or created during food processing

- By-products of waste incinerators (especially in the past), household heating, traffic, forest fires, and metal, pulp and paper industry

- In US, human body burden of TCDD and dioxin TEQ decreased 10-fold and 4- to 5-fold respectively between 70’s and 1999, leading to a decrease of exposure >95%
Dioxin and dioxin-like PCB exposure levels over time

Reductions in Average Exposure to Dioxins/Furans/PCBs Over Time

pg*/kg-body weight/day

1970
>15 TEQ**

1990
1-4 TEQ**

2010
<1 TEQ (Projected***)

PCBs
TCDD
Other dioxins/furans
Contribution of different food commodities to dioxin exposure levels in humans

Germany

- Milk and Dairy: 42%
- Meat: 17%
- Fish: 17%
- Poultry: 3%
- Eggs: 8%
- Fruit and Vegetables: 6%
- Oils and Fats: 7%

USA

- Milk and Dairy: 41%
- Meat: 32%
- Fish: 6%
- Poultry: 6%
- Eggs: 2%
- Fruit and Vegetables: 11%
- Oils and Fat: 2%
Toxic Equivalency Factor (TEF)

Congener toxic potency expressed relative to that of a reference compound, i.e. TCDD. Arbitrary $\text{TEF}_{\text{TCDD}} = 1$

WHO criteria for including a dioxin-like PCB compound in the TEF scheme

- show a structural relationship to the PCDDs and PCDFs
- bind to the Ah receptor
- elicit Ah receptor-mediated biochemical and toxic responses, and
- be persistent and accumulate in the food chain
Toxic Equivalency Factor (TEF)

<table>
<thead>
<tr>
<th>PDDDs</th>
<th>TEF</th>
<th>'Non-ortho' PCBs</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCDD</td>
<td>1</td>
<td>3,3',4,4'-TCB</td>
<td>0.0001</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>1</td>
<td>3,4,4',5-TCB</td>
<td>0.0003</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td>0.1</td>
<td>3,3',4,4',5-PeCB</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>0.1</td>
<td>3,3',4,4',5,5'-HxCB</td>
<td>0.03</td>
</tr>
<tr>
<td>1,2,3,7,8, 9-HxCDD</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCDD</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDFs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-TCDF</td>
<td>0.1</td>
<td>2,3,3',4,4'-PeCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDF</td>
<td>0.03</td>
<td>2,3,4,4',5-PeCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>2,3,4,7,8-PeCDF</td>
<td>0.3</td>
<td>2,3',4,4',5-PeCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3,3',4,4',5-PeCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3,3',4,4',5-HxCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDF</td>
<td>0.1</td>
<td>2,3,3',4,4',5,5'-HxCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>2,3,4,6,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3',4,4',5,5'-HxCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>0.01</td>
<td>2,3,3',4,4',5,5'-HpCB</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCDF</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEQ Approach – Dose Additivity

TEFs are based on toxicological evaluations of dose–response relationships between external exposure, i.e. the levels of intake of congeners, and toxicity in organs.

\[
\text{TEQ} = C_1 \text{TEF}_1 + C_2 \text{TEF}_2 + C_i \text{TEF}_i + \ldots
\]

TEQ = Toxic Equivalent of the mixture.
TEF$_i$ = Toxic Equivalency Factor for dioxin or dioxin-like PCB “i”
C$_i$ = Level of intake of Dioxin or dioxin-like PCB “i” in the mixture.
Children and breastfeeding

- Sweden, exposure estimates exceed TDI, high consumption of fish in the diet

- Belgium, breastfed babies, dioxin intake > 20 x TDI. First-3-months intake 6% lifetime dioxin intake

- US, exposure data indicates that children might exceed the WHO-TEQ limit

- Germany, breastfed babies, dioxin intake > 60 x TDI. 6-y old children, 50% dioxin body burden via breastfeeding
Dioxins and dioxin-like PCBs

Polychlorinated dibenzodioxins (PCDDs)

Polychlorinated dibenzofurans (PCDFs)

Dioxin

Polychlorinated biphenyls (PCBs)

2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD or TCDD)
MARS Dioxins - Toxicity

- Wasting syndrome
- Impairment of immune responses
- Chloracne and related dermal lesions
- Reproductive Toxicity
- Carcinogenicity
- Teratogenicity
- Death

Ukraine President Viktor Yushchenko
MARS
Pesticides
Food Safety Incidents - Pesticides

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Commodity</th>
<th>Pesticide</th>
<th>Route of Contamin.</th>
<th>Exposure Time</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>India</td>
<td>Flour</td>
<td>Parathion</td>
<td>Transport</td>
<td>1-2 months</td>
<td>360 people ill and 102 deaths</td>
</tr>
<tr>
<td>1971</td>
<td>Iraq</td>
<td>Wheat and Bread</td>
<td>Methyl mercury</td>
<td>Accidental use</td>
<td>6 months</td>
<td>6500 people ill and 459 deaths</td>
</tr>
<tr>
<td>1983</td>
<td>Senegal</td>
<td>Oil</td>
<td>Parathion</td>
<td>Unsafe use</td>
<td>1 day</td>
<td>25 people ill and 18 deaths</td>
</tr>
<tr>
<td>1985</td>
<td>USA</td>
<td>Watermelon</td>
<td>Aldicarb</td>
<td>Unsafe use</td>
<td>3 month</td>
<td>1350 people ill and no deaths</td>
</tr>
<tr>
<td>1989</td>
<td>Taiwan</td>
<td>Flour</td>
<td>Barium carbonate</td>
<td>Accidental use</td>
<td>1 day</td>
<td>13 people ill and 1 death</td>
</tr>
<tr>
<td>1997</td>
<td>India</td>
<td>Meal ingredients</td>
<td>Malathion</td>
<td>Unsafe use</td>
<td>1 day</td>
<td>60 people ill and 1 death</td>
</tr>
</tbody>
</table>
Pesticides

- Pesticide is any substance, preparation or organism prepared or used for controlling any pest

- Maximum Residue Level (MRL), maximum concentration of a pesticide residue permitted in or on food and feed

- MRLs, Good Agricultural Practice check

- MRLs are NOT safety limits. Exposure to residues in excess of an MRL does not imply a hazard to health → Acceptable Daily Intake (ADI)
<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Citrus fruit (orange)*</th>
<th>Tree Nuts (almonds)*</th>
<th>Root and tuber vegetables (potatoes)*</th>
<th>Bulb vegetables (garlic)*</th>
<th>Leaf vegetables and fresh herbs (lettuce)*</th>
<th>ADI**</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCB</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00008</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0.01</td>
<td>0.01-0.05</td>
<td>0.01-0.1</td>
<td>0.01-0.05</td>
<td>0.01</td>
<td>0.0002</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.003</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
</tr>
<tr>
<td>Alachlor</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* mg/kg commodity
** mg/kg BW/d
Pesticides-Regulation (EC) No 396/2005

- Pesticide residues, MRLs, in food.
- Pesticides currently or formerly used in agriculture in or outside the EU (~1100)
- MRLs for fresh products (315), MRLs already in force before September 2008 (~45,000), harmonised MRLs previously set by the Member States (~100,000)
- A list of low risk substances for which MRLs are not necessary.
- EFSA, peer review programme, 1993, safety assessment of all active substances used in plant protection products.
Pesticides - Toxicity

- **Fungicides** - Low toxicity, irritating to skin, eyes, respiratory tract
- **Herbicides** - Low toxicity, irritating to skin, eyes, respiratory tract, diarrhea, vomiting
- **Insecticides** - Nervous system disorders, gastric symptoms, headache, dizziness, muscle weakness, coma and death

<table>
<thead>
<tr>
<th></th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral LD$_{50}$ (mg/kg BW)</td>
<td>≤ 50</td>
<td>50-500</td>
<td>500-5000</td>
<td>>5000</td>
</tr>
<tr>
<td>Inhalation LC$_{50}$ (mg/l)</td>
<td>≤0.2</td>
<td>0.2-2</td>
<td>2-20</td>
<td>>20</td>
</tr>
<tr>
<td>Dermal LD$_{50}$ (mg/kg BW)</td>
<td>≤200</td>
<td>200-2000</td>
<td>2000-20000</td>
<td>>20000</td>
</tr>
<tr>
<td>Ocular effects</td>
<td>Corrosive corneal opacity not reversible within 7 days</td>
<td>Corneal Opacity reversible within 7 days; irritation persisting for 7 days</td>
<td>No corneal opacity; irritation reversible within 7 days</td>
<td>No irritation</td>
</tr>
<tr>
<td>Dermal effects</td>
<td>Corrosive</td>
<td>Severe irritation at 72 h.</td>
<td>Moderate irritation at 72 h.</td>
<td>Middle or slight irritation at 72 h.</td>
</tr>
</tbody>
</table>
Material Quality Management Process

1. Material Risk Assessment
2. Draft Material Specification
3. Vendor Risk Assessment & approval for development
4. Material specification approval
5. Vendor Management

- Exception Management
- Continuous Improvement
- Performance Review
- Verification
Material Risk Assessment (MRA) – How to manage risks?

• The first step in the Mars Inc. Material Quality Management (MQM) standard.

• Identify inherent hazards related to a material

• Determine “severity of Effect” vs “Likelihood of Occurrence” => High / Medium / Low risk

Assess supplier controls vs own controls

• what must be controlled at the supplier

• what will be controlled at own site

• relationship between Supplier and own HACCP
Material Risk Assessment (MRA)

- What is the hazard? Chemical, Physical, Biological
- What does the supplier do to mitigate the risk?
- What do MARS do to mitigate the risk?
- Residual risk?
Thank you!
References

Commission Regulation(EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs

Electronic Code of Federal Regulations 40 CFR 156.62 [http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div5&view=text&node=40:3A23.0.1.1.7&idno=40;sid=48302bcda20b542dd44746b6e576f543;cc=ecfr#40:23.0.1.1.7.3.1.2](last accessed February 11th 2010)

European Commission, Health & Consumer Protection Directorate-General, Scientific Committee on Food (2001). Opinion of the SFC on the risk assessment of dioxins and dioxin-like PCBs in food. [Update based on new scientific information available since the adoption of the the SCF opinion of 22nd November 2000. Adopted 30 May 2001]

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Ferrer A., Cabral R., Recent epidemics of poisoning by pesticides, Toxicology Letters 82/83 (1995) 55-63

Joint Meeting on Pesticide Residues (JMPR) (2006). Inventory of IPCS and other WHO pesticide evaluations and summary of toxicological evaluations performed by the Joint Meeting on Pesticide Residues (JMPR)

Ministerial Council on Dioxin Policy of Japan (1999)

National Health & Medical Research Council (2002) Dioxins: Recommendation for a Tolerable Monthly Intake for Australians

References

