Combining biocontrol with chlorine dioxide and other intervention technologies for inactivation of foodborne pathogens on produce

Dr. Modesto Olanya and Dr. Bassam Annous

USDA-Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.

Outbreaks of food-borne illnesses

Produce	Outbreaks	Year	Pathogens
Frozen product	19 States (35 cases)	2013	<i>E. coli</i> 0121
Cucumber	18 States (81 cases)	2013	Salmonella Saintpaul
Spinach & spring mix	5 States (33 cases)	2012	<i>E. coli</i> O157:H7
Raw clover sprouts	11 States (29 cases)	2012	<i>E. coli</i> O26
Cantaloupe	24 States (261 cases)	2012	<i>Salmonella</i> Typhimurium
Unidentified	9 States (18 cases)	2012	<i>E. coli</i> O145 (STEC)
Romaine lettuce	10 States (60 cases)	2011	<i>E. coli</i> O157:H7
Cantaloupes	28 States (147 cases)	2011	L. monocytogenes
Cantaloupes	9 States (20 cases)	2011	<i>Salmonella</i> Panama
Alfalfa / spicy sprout	5 States (25 cases)	2011	Salmonella Entiritidis
Fresh Papaya (pawpaw)	25 States (106 cases)	2011	<i>Salmonella</i> Agona

Source: CDC, Atlanta, GA

Non-thermal Intervention Technologies for food safety

- Physical measures: Irradiation (gamma irradiation, UV), cold plasma.
- Biological control measures (Antagonistic microbes, competitive bacteria, predatory microbes e.g. *Bdellovibrio*, *Bacteriovorax* sp., and phages.
- Chemical intervention measures e.g. chlorine dioxide, electrolyzed water, ozone, hydrogen peroxide and others.

- Assess the recovery of *E. coli* O157:H7 from spinach as well as *Salmonella*, and *Pseudomonas* strains from tomatoes.
- Determine the efficacy of *P. fluorescens* and *P*. *chlororaphis* for biocontrol of *Ec* on spinach and tomatoes.
- Assess the efficacy of chlorine dioxide and *Pseudomonas* strains on the survival of *Salmonella* serovars on tomatoes.

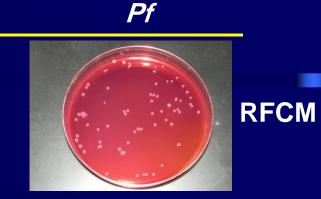
Materials and methods

Bacterial strains

- *Escherichia coli* O157:H7 ATCC strains 43894, 43895 & 35150 (USDA-ARS, ERRC).
- Pseudomonas fluorescens strains 2-79, Q2-87, & Q8 R1 (non-pathogenic, non-pectolytic) – (USDA-ARS, Pullman).

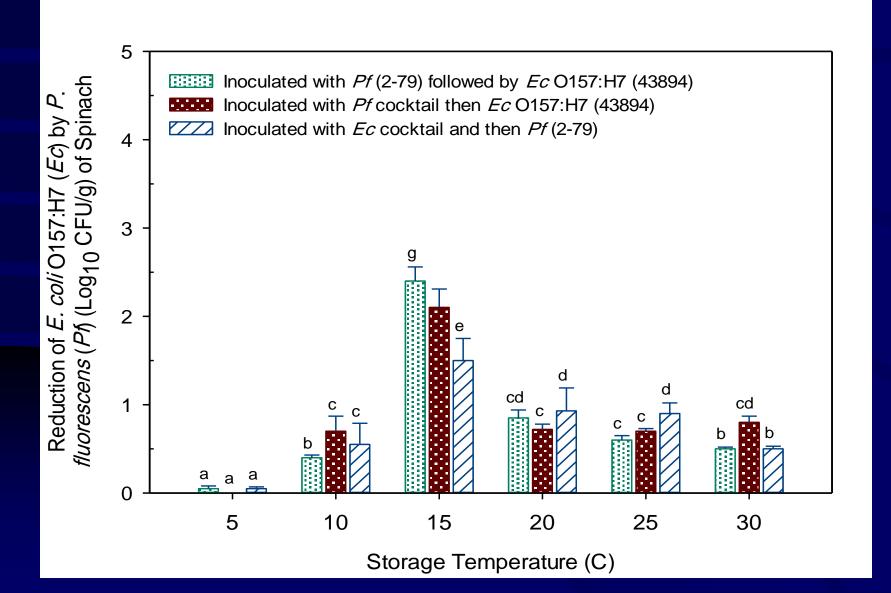
Bacteriological media

E. coli O157:H7 chromogenic medium (RFCM), Pseudomonas Agar F (PAF) & CT- SMAC.


Recovery of *E. coli* O157:H7 (*Ec*) and *P. fluorescens* (*Pf*) and both bacteria (*Ec* & *Pf*) from broths and inoculated spinach

Ec

Ec and Pf


CT-SMAC

Efficacy of *P. fluorescens* on the reduction of *E. coli* O157:H7 (*Ec*) on spinach (20 °C)

Treatment	24 Hrs	48 hrs
<i>P. fluorescens</i> (Pf) and <i>Ec</i>	Reduction of <i>Ec</i> (Log CFU/g)	Reduction of <i>EC</i> (Log CFU/g)
<i>Ec</i> 43894 + <i>Pf</i> 2-79	0.95 <u>+</u> 0.45b	0.57 <u>+</u> 0.12a
<i>Ec</i> 43894 + <i>Pf</i> Q287	2.10 <u>+</u> 0.00a	0.48 <u>+</u> 0.21a
<i>Ec</i> 43894 + <i>Pf</i> 2-79	1.60 <u>+</u> 0.00ab	0.70 <u>+</u> 0.13a
<i>Ec</i> 43895 + <i>Pf</i> 2-79	1.05 <u>+</u> 0.65b	0.70 <u>+</u> 0.02a
<i>Ec</i> 43895 + <i>Pf</i> Q287	1.50 <u>+</u> 0.20ab	0.48 <u>+</u> 0.24a
<i>Ec</i> 43895 + <i>Pf</i> 2-79	0.80 <u>+</u> 0.16b	0.53 <u>+</u> 0.11a

Biocontrol of *E. coli* O157:H7 (*Ec*) by *P. fluorescens* (*Pf*) at various temperatures

Summary

• Reduction of *E. coli* (Ec) by *P. fluorescens* ranged from 0.5-2.1 log CFU/g of spinach. Low to moderate reductions of *Ec* populations by *Pf* may be attributed to equal ratios of biocontrol to the pathogen.

- Efficacy of biocontrol was significantly (*P*<0.05) affected by storage temperatures. Suppressive effects were greater at 15 °C (1.5-2.4 log CFU/g) than at other temperatures (<0.93 log CFU/g).
- Inoculation sequences had no effect on biocontrol efficacy. Preemptive inoculations, simultaneous & post-pathogen inoculations imply pre-emptive and competitive exclusions contributing to biocontrol efficacy.

Efficacy of gaseous chlorine dioxide and *P. chlororaphis* on the survival of *Salmonella* serovars on tomatoes

Materials and methods Bacterial strains

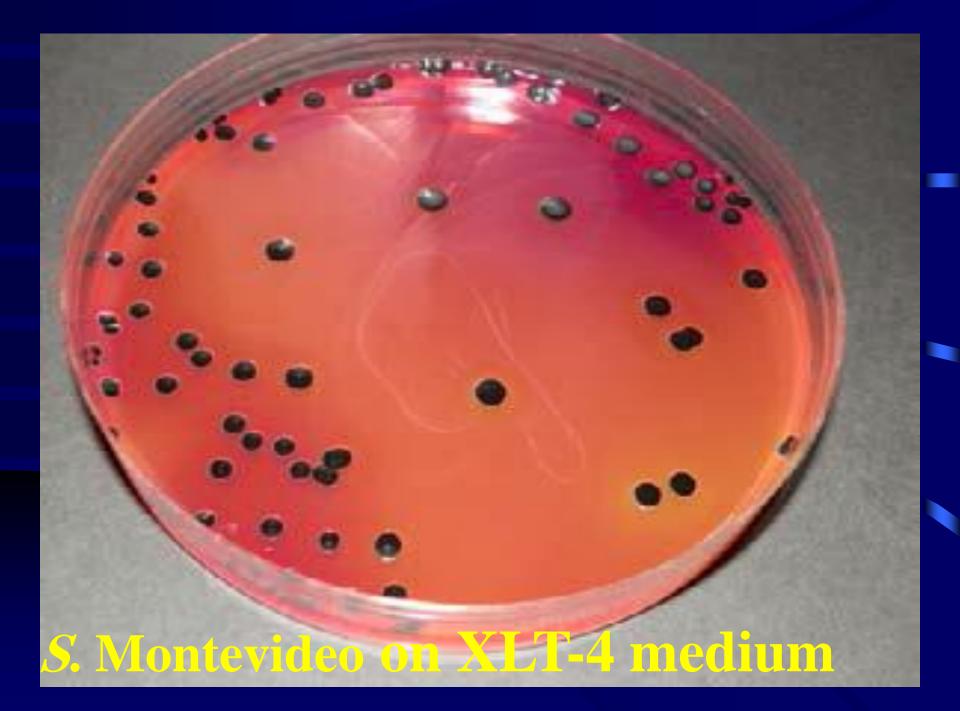
- Salmonella Montevideo strain G4639 and S.
 Typhimurium ATCC 2380, P. chlororaphis, 30-84.
- P. chlororaphis B-997 (NRRL-Peoria), P. fluorescens strains 2-79, Q2-87,Q8R1

Bacteriological media

• Pseudomonas Agar F (PAF) & XLT-4 Media.

Chlorine dioxide generator / Humidity chamber

 ClorDiSys Minidox-L gas generator (PA), Environmental RH /Temp Chamber (Thermal product solutions, PA).



P. chlororaphis 30 84 & S. Montevideo

P. chlororaphie 30 84 & S. Montevideo

•

Efficacy of *Pseudomonas* strains for biocontrol of *Salmonella* serovars on spot-inoculated tomatoes

Biocontrol	Salmonella	Salmonella
applications	Montevideo (Log CFU/g)	Typhimurium (Log CFU/g)
<i>P. chlororaphis</i> 30-84	0.95 <u>+</u> 0.18a	1.35 <u>+</u> 0.24ab
<i>P. chlororaphis</i> B-997	0.74 <u>+</u> 0.12a	2.00 <u>+</u> 0.08a
P. fluorescens 2-79	0.90 <u>+</u> 0.11a	1.07 <u>+</u> 0.09ab
P. fluorescens Q2 87	0.53 <u>+</u> 0.13a	0.49 <u>+</u> 0.11b
P. <i>fluorescens</i> Q8 R1	0.51 <u>+</u> 0.10a	0.46 <u>+</u> 0.07b

Effects of gaseous chlorine dioxide on the survival of Salmonella enterica Montevideo, Typhimurium, and Pseudomonas chlororaphis on tomatoes

Time* (Hrs)	Microbes	Untreated (control) (Log CFU/g)	Chlorine dioxide 0.4 mg/L (Log CFU/g)
2	<i>S</i> . Montevideo	5.27 <u>+</u> 0.39b	0.83 <u>+</u> 0.00a
	<i>S</i> . Typhimurium	5.63 <u>+</u> 0.2ab	< 0.30a
	<i>P. chlororaphis</i>	6.47 <u>+</u> 0.35a	3.41 <u>+</u> 1.10b
4	<i>S</i> . Montevideo	5.42 <u>+</u> 0.00b	<0.30a
	<i>S</i> .Typhimurium	5.37 <u>+</u> 0.15b	<0.30 a
	<i>P. chlororapis</i>	5.84 <u>+</u> 0.01b	2.59 <u>+</u> 1.46b

*Chlorine dioxide was applied at 0.4 mg/L, 90% R.H., and 13 °C.

Survival of *S. enterica* sequentially inoculated with *P. chlororaphis* on tomatoes and gassing with chlorine dioxide

Time* (Hrs)	Microbes	Untreated (control) (Log CFU/g)	Chlorine dioxide 0.4 mg/L (Log CFU/g)
2	<i>S</i> . Montevideo	5.17 <u>+</u> 0.34a	<0.30a
	<i>S</i> . Typhimurium	5.40 <u>+</u> 0.16a	<0.30a
4	<i>S</i> . Montevideo	3.77 <u>+</u> 0.01b	<0.30a
	<i>S</i> . Typhimurium	4.13 <u>+</u> 0.06b	<0.30a

*Chlorine dioxide was applied at 0.4 mg/L, 90% R.H., and 13 °C.

Summary

- *Pseudomonas* strains (biocontrol agent) and *Salmonella* serovars were selectively recovered and enumerated on PAF and XLT-4 media when co-inoculated on tomatoes.
- Inoculum of *P. chlororaphis*, *S*. Montevideo and *S*. Typhimurium recovered from tomatoes were similar (4.5 log CFU/g)
- On tomatoes, mean reductions of *Salmonella* Montevideo and *S*. Typhimurium ranged from 0.51-0.95 and 0.46-2.00 log CFU/g of produce (low to moderate).
- The reductions of *Salmonella* serovars by *P. chlororaphis* were relatively higher than by *P. fluorescens* (biocontrol microbe).

Summary

- Gaseous chlorine dioxide (0.4 mg/L) reduced bacterial populations compared to the untreated control.
- The reductions of populations of *Salmonella* Montevideo and Typhimurium on tomato by chlorine dioxide (4 hrs) were in excess of 5 log CFU/g.
- *P. chlororaphis* was also significantly (*P*<0.05) reduced by chlorine dioxide application and suviving populations were 3.41 and 2.59 log CFU/g at 2 and 4 hrs of gaseous treatment.

Acknowledgements

- Janysha Taylor for technical support
- USDA-ARS collaborators

 For further questions: Dr. Modesto Olanya at e-mail: <u>modesto.Olanya@ars.usda.gov</u>

